The Longitude of Tropical Pacific Deep Convection: A Perspective on ENSO Diversity and Implications for Western US Hydroclimate
Abstract
The El Niño - Southern Oscillation (ENSO) is a natural variation of ocean temperature in the tropical Pacific and a major driver of global climate variability, including precipitation extremes and tropical cyclone activity. ENSO has a diversity of spatial patterns that can alter its teleconnections. However, no single index can capture ENSO's diversity, leading to busts in seasonal climate forecasts. The 2015-2016 El Niño is a case in point, producing unexpectedly weak impacts on California precipitation despite sea-surface temperature (SST) warming comparable to historical El Niño events that led to extreme precipitation. We demonstrate that this response can be explained by El Nino's spatial pattern, and present a new ENSO index that can capture such ENSO diversity. Unlike traditional ENSO indices based on SST anomalies in a fixed region, the new "ENSO Longitude Index" tracks the east/west shifts in tropical Pacific deep convection that drive climate teleconnections and accounts for both the non-linear response of deep convection to SST as well as background SST changes associated with climate change. This physically-based index (1) reveals future changes in ENSO that are not apparent from traditional indices and (2) improves the value of ENSO as a predictor of California's seasonal hydroclimate extremes compared to traditional ENSO indices.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2019
- Bibcode:
- 2019AGUFMGC24A..04P
- Keywords:
-
- 3339 Ocean/atmosphere interactions;
- ATMOSPHERIC PROCESSES;
- 1616 Climate variability;
- GLOBAL CHANGE;
- 1620 Climate dynamics;
- GLOBAL CHANGE;
- 4522 ENSO;
- OCEANOGRAPHY: PHYSICAL