Existence of equivariant models of spherical varieties and other G-varieties
Abstract
Let $k_0$ be a field of characteristic $0$ with algebraic closure $k$. Let $G$ be a connected reductive $k$-group, and let $Y$ be a spherical variety over $k$ (a spherical homogeneous space or a spherical embedding). Let $G_0$ be a $k_0$-model ($k_0$-form) of $G$. We give necessary and sufficient conditions for the existence of a $G_0$-equivariant $k_0$-model of $Y$.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2018
- DOI:
- arXiv:
- arXiv:1810.08960
- Bibcode:
- 2018arXiv181008960B
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Group Theory;
- Primary: 14M27. Secondary: 14M17;
- 14G20;
- 14G25;
- 14G27;
- 20G15;
- 12G05
- E-Print:
- This preprint supersedes arXiv:1804.08475. V1: 39 pages. V2: 44 pages