A First-order Method for Monotone Stochastic Variational Inequalities on Semidefinite Matrix Spaces
Abstract
Motivated by multi-user optimization problems and non-cooperative Nash games in stochastic regimes, we consider stochastic variational inequality (SVI) problems on matrix spaces where the variables are positive semidefinite matrices and the mapping is merely monotone. Much of the interest in the theory of variational inequality (VI) has focused on addressing VIs on vector spaces.Yet, most existing methods either rely on strong assumptions, or require a two-loop framework where at each iteration, a projection problem, i.e., a semidefinite optimization problem needs to be solved. Motivated by this gap, we develop a stochastic mirror descent method where we choose the distance generating function to be defined as the quantum entropy. This method is a single-loop first-order method in the sense that it only requires a gradient-type of update at each iteration. The novelty of this work lies in the convergence analysis that is carried out through employing an auxiliary sequence of stochastic matrices. Our contribution is three-fold: (i) under this setting and employing averaging techniques, we show that the iterate generated by the algorithm converges to a weak solution of the SVI; (ii) moreover, we derive a convergence rate in terms of the expected value of a suitably defined gap function; (iii) we implement the developed method for solving a multiple-input multiple-output multi-cell cellular wireless network composed of seven hexagonal cells and present the numerical experiments supporting the convergence of the proposed method.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2018
- DOI:
- 10.48550/arXiv.1809.09155
- arXiv:
- arXiv:1809.09155
- Bibcode:
- 2018arXiv180909155M
- Keywords:
-
- Mathematics - Optimization and Control