Some properties of Neumann quasigroups
Abstract
Any Neumann quasigroup $(Q, \cdot)$ (quasigroup with Neumann identity $ x \cdot(yz \cdot yx) = z$ is called Neumann quasigroup) can be presented in the form $x\cdot y = x-y$, where $(Q, +)$ is an abelian group. Automorphism group of Neumann quasigroup coincides with the group $Aut(Q, +)$. Any Schweizer quasigroup (quasigroup with Schweizer identity $xy \cdot xz = zy$ is called Schweizer quasigroup) is a Neumann quasigroup and vice versa. Any Neumann quasigroup is a GA-quasigroup.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2018
- DOI:
- arXiv:
- arXiv:1809.07095
- Bibcode:
- 2018arXiv180907095D
- Keywords:
-
- Mathematics - Group Theory;
- 20N05
- E-Print:
- 7 pages