Some estimates for the bilinear fractional integrals on the Morrey space
Abstract
In this paper, we are interested in the following bilinear fractional integral operator $B\mathcal{I}_\alpha$ defined by \[ B\mathcal{I}_{\alpha}({f,g})(x)=\int_{% %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ^{n}}\frac{f(x-y)g(x+y)}{|y|^{n-\alpha}}dy, \] with $0< \alpha<n$. We prove the weighted boundedness of $B\mathcal{I}_\alpha$ on the Morrey type spaces. Moreover, an Olsen type inequality for $B\mathcal{I}_\alpha$ is also given.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2018
- DOI:
- 10.48550/arXiv.1808.05189
- arXiv:
- arXiv:1808.05189
- Bibcode:
- 2018arXiv180805189Y
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 42B20;
- 42B25;
- F.2.2
- E-Print:
- 25 pages