Dual Spaces of Anisotropic Mixed-Norm Hardy Spaces
Abstract
Let $\vec{a}:=(a_1,\ldots,a_n)\in[1,\infty)^n$, $\vec{p}:=(p_1,\ldots,p_n)\in(0,\infty)^n$ and $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$ be the anisotropic mixed-norm Hardy space associated with $\vec{a}$ defined via the non-tangential grand maximal function. In this article, the authors give the dual space of $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$, which was asked by Cleanthous et al. in [J. Geom. Anal. 27 (2017), 2758-2787]. More precisely, via first introducing the anisotropic mixed-norm Campanato space $\mathcal{L}_{\vec{p},\,q,\,s}^{\vec{a}}(\mathbb{R}^n)$ with $q\in[1,\infty]$ and $s\in\mathbb{Z}_+:=\{0,1,\ldots\}$, and applying the known atomic and finite atomic characterizations of $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$, the authors prove that the dual space of $H_{\vec{a}}^{\vec{p}}(\mathbb{R}^n)$ is the space $\mathcal{L}_{\vec{p},\,r',\,s}^{\vec{a}}(\mathbb{R}^n)$ with $\vec{p}\in(0,1]^n$, $r\in(1,\infty]$, $1/r+1/r'=1$ and $s\in[\lfloor\frac{\nu}{a_-}(\frac{1}{p_-}-1) \rfloor,\infty)\cap\mathbb{Z}_+$, where $\nu:=a_1+\cdots+a_n$, $a_-:=\min\{a_1,\ldots,a_n\}$, $p_-:=\min\{p_1,\ldots,p_n\}$ and, for any $t\in \mathbb{R}$, $\lfloor t\rfloor$ denotes the largest integer not greater than $t$. This duality result is new even for the isotropic mixed-norm Hardy spaces on $\mathbb{R}^n$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2018
- DOI:
- 10.48550/arXiv.1804.05558
- arXiv:
- arXiv:1804.05558
- Bibcode:
- 2018arXiv180405558H
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Analysis of PDEs;
- Mathematics - Functional Analysis;
- Primary 42B35;
- Secondary 42B30;
- 46E30
- E-Print:
- 15 pages