On Eigenvalue Problems Related to the Laplacian in a Class of Doubly Connected Domains
Abstract
We consider two eigenvalue problems for Laplacian on some specific doubly connected domain. In particular, we study the following two eigenvalue problems. Let $B_1$ be an open ball in $\mathbb{R}^n$ and $B_0$ be a ball contained in $B_1$. Let $\nu$ be the outward unit normal on $\partial B_1$. Then the first eigenvalue of the problem \begin{align*} \begin{array}{rcll} \Delta u &=& 0 \, &\mbox{ in } \, B_1 \setminus \bar{B}_0 , \\ u &=& 0 \, &\mbox{ on } \, {\partial B_0}, \\ \frac{\partial u}{\partial \nu} &=& \tau \, u \, &\mbox{ on } \, {\partial B_1}, \end{array} \end{align*} attains maximum if and only if $B_0$ and $B_1$ are concentric. Let $D$ be a domain in a non-compact rank-$1$ symmetric space $(\mathbb{M}, ds^2)$, geodesically symmetric with respect to the point $ p\in \mathbb{M}$. Let $B_0$ be a ball in $\mathbb{M}$ centered at $p$ such that $\bar{{B}_0}\subset D$ and $\nu$ be the outward unit normal on ${\partial (D \setminus \bar{B}_0)}$. Then the first non-zero eigenvalue of \begin{align*} \begin{array}{rcll} \Delta u &=& \mu \ u \, &\mbox{ in } \, D \setminus \bar{B}_0, \\ \frac{\partial u}{\partial \nu} &=& 0 \, &\mbox{ on } \, {\partial (D \setminus \bar{B}_0)}, \end{array} \end{align*} attains maximum if and only if $D$ is a geodesic ball centered at $p$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.05750
- Bibcode:
- 2018arXiv180305750V
- Keywords:
-
- Mathematics - Differential Geometry