Correlation Manipulating Circuits for Stochastic Computing
Abstract
Stochastic computing (SC) is an emerging computing technique that promises high density, low power, and error tolerant solutions. In SC, values are encoded as unary bitstreams and SC arithmetic circuits operate on one or more bitstreams. In many cases, the input bitstreams must be correlated or uncorrelated for SC arithmetic to produce accurate results. As a result, a key challenge for designing SC accelerators is manipulating the impact of correlation across SC operations. This paper presents and evaluates a set of novel correlation manipulating circuits to manage correlation in SC computation: a synchronizer, desynchronizer, and decorrelator. We then use these circuits to propose improved SC maximum, minimum, and saturating adder designs. Compared to existing correlation manipulation techniques, our circuits are more accurate and up to 3x more energy efficient. In the context of an image processing pipeline, these circuits can reduce the total energy consumption by up to 24%.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1803.04862
- Bibcode:
- 2018arXiv180304862L
- Keywords:
-
- Electrical Engineering and Systems Science - Signal Processing;
- Computer Science - Hardware Architecture
- E-Print:
- 6 pages, 5 figures, 4 tables, Design, Automation and Test in Europe Conference and Exhibition (2018)