Pyrolysis of human feces: Gas yield analysis and kinetic modeling
Abstract
Pyrolysis of human feces renders the waste free of pathogens and is a potential method of treating fecal sludge waste collected from non-sewered systems. Slow pyrolysis experiments were conducted on human feces and the char yield and gas evolution quantified at 1-10 °C/min heating rates. Char yield ranged from 35.1 to 35.8% (dry mass basis), while the gas yield ranged from 17.2 to 29.6% (dry mass basis). The pyrolysis gases detected were CO, CO2, CH4, C2H6, and H2. These non-condensable gases contained a higher heating value (HHV) ranging from 7.2 to 22.8 MJ/Nm3. Kinetic analysis was done by a pyrolysis reaction model free method (Isoconversional) as well as a DAEM (Distributed Activated Energy Model) method that assumes many irreversible first order reactions. Both yielded very close values for activation energy ranging from 141 kJ/mol to 409 kJ/mol, with half of the biomass conversion happening at 241.5 ± 2.9 kJ/mol. The findings of the research provide useful technical information that can guide the design of a pyrolysis system to treat fecal waste. Social acceptance and scale-up issues need to be addressed through further research.
- Publication:
-
Waste Management
- Pub Date:
- September 2018
- DOI:
- Bibcode:
- 2018WaMan..79..214Y
- Keywords:
-
- Fecal sludge;
- Latrine waste;
- DAEM;
- Pyrolysis gas;
- Biomass pyrolysis