Integration and instrument characterization of the cosmic infrared background experiment 2 (CIBER-2)
Abstract
The extragalactic background light (EBL) is the integrated emission from all objects outside of the Milky Way galaxy. Imprinted by the history of stellar emission, the EBL in the near infrared traces light back to the birth of the first stars in the Universe and can allow tight constraints on structure formation models. Recent studies using data from the Spitzer Space Telescope and the first Cosmic Infrared Background ExpeRiment (CIBER-1) find that there are excess fluctuations in the EBL on large scales which have been attributed to either high redshift galaxies and quasars, or to stars that were stripped from their host galaxies during merging events. To help disentangle these two models, multi-wavelength data can be used to trace their distinctive spectral features. Following the success of CIBER-1, CIBER-2 is designed to identify the sources of the EBL excess fluctuations using data in six wavebands covering the optical and near infrared. The experiment consists of a cryogenic payload and is scheduled to launch four times on a recoverable sounding rocket. CIBER-2 has a 28.5 cm telescope coupled with an optics system to obtain wide-field images in six broad spectral bands between 0.5 and 2.5 μm simultaneously. The experiment uses 2048 × 2048 HAWAII-2RG detector arrays and a cryogenic star tracker. A prototype of the cryogenic star tracker is under construction for a separate launch to verify its performance and star tracking algorithm. The mechanical, optical, and electrical components of the CIBER-2 experiment will have been integrated into the payload by mid-2018. Here we present the final design of CIBER-2 and our team's instrument characterization efforts. The design and analysis of the optical focus tests will be discussed. We also report on the performance of CIBER-2 support systems, including the cooling mechanisms and deployable components. Finally, we outline the remaining tasks required to prepare the payload for launch.
- Publication:
-
Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave
- Pub Date:
- July 2018
- DOI:
- Bibcode:
- 2018SPIE10698E..4JN