A variational approach to Navier-Stokes
Abstract
We present a variational resolution of the incompressible Navier-Stokes system by means of stabilized weighted-inertia-dissipation-energy (WIDE) functionals. The minimization of these parameter-dependent functionals corresponds to an elliptic-in-time regularization of the system. By passing to the limit in the regularization parameter along subsequences of WIDE minimizers one recovers a classical Leray-Hopf weak solution.
- Publication:
-
Nonlinearity
- Pub Date:
- December 2018
- DOI:
- arXiv:
- arXiv:1802.06606
- Bibcode:
- 2018Nonli..31.5664O
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Condensed Matter - Other Condensed Matter;
- 35Q30;
- 76D05
- E-Print:
- doi:10.1088/1361-6544/aae722