An Earth-sized exoplanet with a Mercury-like composition
Abstract
Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.
- Publication:
-
Nature Astronomy
- Pub Date:
- March 2018
- DOI:
- arXiv:
- arXiv:1805.08405
- Bibcode:
- 2018NatAs...2..393S
- Keywords:
-
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- Accepted preprint in Nature Astronomy. Publisher-edited version available at http://rdcu.be/JRE7 Supplement materials available at https://www.nature.com/articles/s41550-018-0420-5