Mechanism and application method to analyze the carrier scattering factor by electrical conductivity ratio based on thermoelectric property measurement
Abstract
Carrier scattering factor is one of the most important parameters for semiconductors. In this paper, we propose the mechanism and the application method to analyze the carrier scattering factor(s) by comparing the ratios of electrical conductivity σ(T)/σ(T0 = 300 K) vs. temperature T in the theoretical calculation and experimental results. It is demonstrated that σ(T)/σ(T0 = 300 K) is only related to the carrier scattering factor when the density of states effective mass, m*, is assumed to be constant in small temperature ranges. Therefore, the carrier scattering factor dependence of the ratios of σ(T)/σ(T0 = 300 K) can be used to pinpoint the carrier scattering mechanism. Taking Bi0.5Sb1.5Te2.7+xSe0.3 as an example, it is found that no matter what theoretical models for the Seebeck coefficient over a range of the reduced Fermi energy are used, the analysis results for the scattering mechanism are unique. The reason behind such an observation is that the ratio of σ(T)/σ(T0) is only dependent on the carrier scattering for a certain material. As such, we can neglect the effect of degeneracy on the carrier scattering mechanism, and select the simplest theoretical Seebeck coefficient model to estimate the scattering mechanism before the self-consistent η(T) (reduced Fermi level) is obtained. The effect of temperature dependence of the m*(T) on the σ(T)/σ(T0) is also discussed.
- Publication:
-
Journal of Applied Physics
- Pub Date:
- January 2018
- DOI:
- 10.1063/1.5002658
- Bibcode:
- 2018JAP...123a5101X