1,000,000 Giant Pulses from the Crab Pulsar
Abstract
The Crab pulsar was first detected soon after the discovery of pulsars, and has long been studied for its unique traits. One of these traits, giant pulses that can be upwards of 1000 times brighter than the average pulse, was key to the Crab's initial detection. Giant pulses are only seen in a few pulsars, and their energy distributions distinguish them from normal pulsed emission. There have been many studies over a period of decades to measure the power-law slope of these energy distributions, which provide insight into the possible emission mechanism of these giant pulses.
The 42-foot telescope at Jodrell Bank Observatory monitors the Crab pulsar on a daily basis. We have single-pulse data dating back to 2012, containing roughly 1,000,000 giant pulses, the largest sample of Crab giant pulses to date. This large set of giant pulses allows us to do a range of science, including pulse-width studies and in-depth studies of giant-pulse energy distributions. The latter are particularly interesting, as close inspection of the high-energy tail of the energy distribution allows us to investigate the detectability of extragalactic giant-pulsing pulsars. Also, by calculating rates from these energy distributions, we may be able to shed light on a possible link between Fast Radio Bursts and giant pulses.- Publication:
-
Pulsar Astrophysics the Next Fifty Years
- Pub Date:
- August 2018
- DOI:
- Bibcode:
- 2018IAUS..337..380M
- Keywords:
-
- pulsars: general;
- radiation mechanisms: nonthermal