The influence of chemical environment on the infrared spectra of embedded molecules in astrophysical ices
Abstract
In this work, one intends to computationally simulate and investigate, via thermochemical calculations, how the chemical environment influences some molecular properties, such as IR spectra and absorption cross section, of individual species embedded in the solid phase employing the Polarized Continuum Model (PCM) approach. The trial molecules used here to check these effects are CO, CO2 and H2O. The solid phase (bulk ice) is simulated using different dielectric constant values representing different types of astrophysical ice at PCM approach. The effect of temperature is also investigated since it is known it affects the dielectric constant of the solvent medium.
- Publication:
-
Astrochemistry VII: Through the Cosmos from Galaxies to Planets
- Pub Date:
- September 2018
- DOI:
- Bibcode:
- 2018IAUS..332..346B
- Keywords:
-
- ISM: molecules;
- abundances;
- infrared: general;
- dense matter;
- astrochemistry