Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction
Abstract
The novel microwave catalyst MgFe2O4-SiC was synthesized via sol-gel method, to remove azo dye Direct Black BN (DB BN) through adsorption and microwave-induced catalytic reaction. Microwave-induced catalytic degradation of DB BN, including adsorption behavior and its influencing factors of DB BN on MgFe2O4-SiC were investigated. According to the obtained results, it indicated that the pseudo-second-order kinetics model was suitable for the adsorption of DB BN onto MgFe2O4-SiC. Besides, the consequence of adsorption isotherm depicted that the adsorption of DB BN was in accordance with the Langmuir isotherm, which verified that the singer layer adsorption of MgFe2O4-SiC was dominant than the multi-layer one. The excellent adsorption capacities of MgFe2O4-SiC were kept in the range of initial pH from 3 to 7. In addition, it could be concluded that the degradation rate of DB BN decreased over ten percent after the adsorption equilibrium had been attained, and the results from the result of comparative experiments manifested that the adsorption process was not conducive to the process of microwave-induced catalytic degradation. The degradation intermediates and products of DB BN were identified and determined by GC-MS and LC-MS. Furthermore, combined with the catalytic mechanism of MgFe2O4-SiC, the proposed degradation pathways of DB BN were the involution of microwave-induced $OH and holes in this catalytic system the breakage of azo bond, hydroxyl substitution, hydroxyl addition, nitration reaction, deamination reaction, desorbate reaction, dehydroxy group and ring-opening reaction.
- Publication:
-
Frontiers of Environmental Science & Engineering
- Pub Date:
- February 2018
- DOI:
- 10.1007/s11783-017-1003-x
- Bibcode:
- 2018FrESE..12....5D
- Keywords:
-
- Adsorption;
- Microwave-induced catalytic degradation;
- Direct black BN;
- Degradation pathway