Regional Characteristics of Typhoon-Induced Ocean Eddies in the East China Sea
Abstract
The asymmetrical structure of typhoon-induced ocean eddies (TIOEs) in the East China Sea (including the Yellow Sea) and the accompanying air-sea interaction are studied using reanalysis products. Thirteen TIOEs are analyzed and divided into three groups with the k-prototype method: Group A with typhoons passing through the central Yellow Sea; Group B with typhoons re-entering the sea from the western Yellow Sea after landing on continental China; and Group C with typhoons occurring across the eastern Yellow Sea near to the Korean Peninsula. The study region is divided into three zones (Zones I, II and III) according to water depth and the Kuroshio position. The TIOEs in Group A are the strongest and could reverse part of the Kuroshio stream, while TIOEs in the other two groups are easily deformed by topography. The strong currents of the TIOEs impact on the latent heat flux distribution and upward transport, which facilitates the typhoon development. The strong divergence within the TIOEs favors an upwelling-induced cooling. A typical TIOE analysis shows that the intensity of the upwelling of TIOEs is proportional to the water depth, but its magnitude is weaker than the upwelling induced by the topography. In Zones I and II, the vertical dimensions of TIOEs and their strong currents are much less than the water depths. In shallow water Zone III, a reversed circulation appears in the lower layer. The strong currents can lead to a greater, faster, and deeper energy transfer downwards than at the center of TIOEs.
- Publication:
-
Advances in Atmospheric Sciences
- Pub Date:
- July 2018
- DOI:
- 10.1007/s00376-017-7173-4
- Bibcode:
- 2018AdAtS..35..826W
- Keywords:
-
- typhoon-induced ocean eddies;
- East China Sea;
- asymmetrical dynamic structure;
- kinetic energy transfer and evolution;
- 台风引致的海洋涡旋;
- 东中国海域;
- 非对称动力结构;
- 动能传输与演变