Refining Models of L1527-IRS
Abstract
This project examines the Class 0/Class 1 protostar L1527-IRS (hereby referred to as L1527) in the interest of creating a more accurate computational model. In a Class 0/Class I protostar like L1527, the envelope is massive, the protostar is growing in mass, and the disk is a small fraction of the protostar mass. Recent work based on ALMA data indicates that L1527, located in the constellation Taurus (about 140 parsecs from Earth), is about ~0.44 solar masses. Existing models were able to fit the spectral energy distribution of L1527 by assuming a puffed-up inner disk. However, the inclusion of the puffed-up disk results in a portion of the disk coinciding with the outflow cavities, a physically unsatisfying arrangement. This project tests models which decrease the size of the disk and increase the density of the outflow cavities (hypothesizing that some dust from the walls of the outflow cavities is swept up into the cavity itself) against existing observational data, and finds that these models fit the data relatively well.
- Publication:
-
American Astronomical Society Meeting Abstracts #232
- Pub Date:
- June 2018
- Bibcode:
- 2018AAS...23222202B