STARFIRE: The Spectroscopic Terahertz Airborne Receiver for Far-InfraRed Exploration
Abstract
Understanding the formation and evolution of galaxies is one of the foremost goals of astrophysics and cosmology today. The cosmic star formation rate has undergone a dramatic evolution over the course of the last seven billion years, with a peak in cosmic star formation near z ~ 1, largely in dust-obscured star forming galaxies (DSFGs), followed by a dramatic fall in both the star formation rate and the fraction of star formation occurring in DSFGs. A variety of unextincted diagnostic lines are present in the far-infrared (FIR) which can provide insight into the conditions of star formation in DSFGs. Spectroscopy in the far-infrared is thus scientifically crucial for understanding galaxy evolution, yet remains technically difficult, particularly for wavelengths shorter than those accessible to ALMA.STARFIRE (the Spectroscopic Terahertz Airborne Receiver for Far-InfraRed Exploration) is a proposed integral-field spectrometer using kinetic inductance detectors, operating from 240 - 420 μm and coupled to a 2.5 meter low-emissivity carbon-fiber balloon-borne telescope. Using dispersive spectroscopy and the stratospheric platform, STARFIRE can achieve better performance than SOFIA or Herschel-SPIRE FTS. STARFIRE is designed to study the ISM of galaxies from 0.5 < z < 1.5, primarily in the [CII](158 μm) line, and also in cross-correlation with [NII] (122 μm). This offers a view of the star-forming medium with minimal impact from dust extinction through the period of peak cosmic star formation and into the current epoch where the star formation rate begins to decline. STARFIRE will be capable of making a high significance detection of the [CII] power spectrum in at least 4 redshift bins and measuring the [CII] x [NII] power spectrum at z ~ 1. The intensity mapped power spectra will be sensitive to one- and two-halo clustering, as well as shot noise, and will relate the mean [CII] intensity as a function of redshift (a proxy for star formation rate density) to the large scale structure. In addition, STARFIRE will detect at least 50 galaxies directly in the [CII] line, and will also be able to stack on optical galaxies to below the SPIRE confusion limit to measure the [CII] luminosity of more typical galaxies.
- Publication:
-
American Astronomical Society Meeting Abstracts #231
- Pub Date:
- January 2018
- Bibcode:
- 2018AAS...23132804A