On the Cauchy problem for the periodic fifth-order KP-I equation
Abstract
The aim of this paper is to investigate the Cauchy problem for the periodic fifth order KP-I equation \[\partial_t u - \partial_x^5 u -\partial_x^{-1}\partial_y^2u + u\partial_x u = 0,~(t,x,y)\in\mathbb{R}\times\mathbb{T}^2\] We prove global well-posedness for constant $x$ mean value initial data in the space $\mathbb{E} = \{u\in L^2,~\partial_x^2 u \in L^2,~\partial_x^{-1}\partial_y u \in L^2\}$ which is the natural energy space associated with this equation.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2017
- DOI:
- 10.48550/arXiv.1712.01134
- arXiv:
- arXiv:1712.01134
- Bibcode:
- 2017arXiv171201134R
- Keywords:
-
- Mathematics - Analysis of PDEs