Base change of twisted Fontaine-Faltings modules and Twisted Higgs-de Rham flows over very ramified valuation rings
Abstract
In this short notes, we prove a stronger version of Theorem 0.6 in our previous paper arXiv:1709.01485: Given a smooth log scheme $(\mathcal{X} \supset \mathcal{D})_{W(\mathbb{F}_q)}$, each stable twisted $f$-periodic logarithmic Higgs bundle $(E,\theta)$ over the closed fiber $(X \supset D)_{\mathbb{F}_q}$ will correspond to a $\mathrm{PGL}_r(\mathbb{F}_{p^f})$-crystalline representation of $\pi_1((\mathcal{X} \setminus \mathcal{D})_{W(\mathbb{F}_q)[\frac{1}{p}]})$ such that its restriction to the geometric fundamental group is absolutely irreducible.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2017
- DOI:
- arXiv:
- arXiv:1711.08162
- Bibcode:
- 2017arXiv171108162S
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Number Theory
- E-Print:
- 14 pages