Estimation of wavelet coefficients on some classes of functions
Abstract
Let $\Psi_m^D$ be orthogonal Daubechies wavelets that have m zero moments and let $$ W_{2,p}^k=\{f \in L_2(R):\|(I \omega)^k\hat f(\omega)\|_p\leq 1\}, \, k \in N. $$ We prove that $$ \lim_{m \to \infty}\, \sup\left\{\frac{|(\Psi_m^D)|}{\|(\hat \Psi_m^D)\|_q}: f \in W_{2, p'}^k\right\}=\frac{\frac{(2\pi)^{1/p-1/2}}{\pi^k}\left(\frac{1-2^{1-pk}}{pk-1}\right)^{1/p}}{(2\pi)^{1/q-1/2}}. $$
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2017
- DOI:
- 10.48550/arXiv.1708.09767
- arXiv:
- arXiv:1708.09767
- Bibcode:
- 2017arXiv170809767B
- Keywords:
-
- Mathematics - Functional Analysis