Uniform convergence in the individual ergodic theorem for symmetric sequence spaces
Abstract
It is proved that for any Dunford-Schwartz operator $T$ acting in the space $l_\infty$ and for each $x\in c_0 $ there exists an element $\widehat x \in c_0 $ such that $\| \frac 1n \sum_{k=0}^{n-1}T^k(x) - \widehat x \|_\infty \to 0$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2017
- DOI:
- arXiv:
- arXiv:1706.09860
- Bibcode:
- 2017arXiv170609860C
- Keywords:
-
- Mathematics - Functional Analysis