On the proximity of multiplicative functions to the function counting prime factors with multiplicity
Abstract
We examine how closely a multiplicative function resembles an additive function. Given a multiplicative function $g$ and an additive function $f$, we examine the size of the quantity $E(f,g;x)=\# \{n\leq x:f(n)=g(n)\}$. We establish a lower bound for $E(\Omega,g,x)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2017
- DOI:
- arXiv:
- arXiv:1706.08646
- Bibcode:
- 2017arXiv170608646A
- Keywords:
-
- Mathematics - Number Theory