On some modules of covariants for a reflection group
Abstract
Let $\mathfrak g$ be a simple Lie algebra with Cartan subalgebra $\mathfrak h$ and Weyl group $W$. We build up a graded map $(\mathcal H\otimes \bigwedge\mathfrak h\otimes \mathfrak h)^W\to (\bigwedge \mathfrak g\otimes \mathfrak g)^\mathfrak g$ of $(\bigwedge \mathfrak g)^\mathfrak g\cong S(\mathfrak h)^W$-modules, where $\mathcal H$ is the space of $W$-harmonics. In this way we prove an enhanced form of a conjecture of Reeder for the adjoint representation. New version with different title. Various improvements. New section 7.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2017
- DOI:
- 10.48550/arXiv.1706.00189
- arXiv:
- arXiv:1706.00189
- Bibcode:
- 2017arXiv170600189D
- Keywords:
-
- Mathematics - Representation Theory
- E-Print:
- 18 Pages