Biconservative submanifolds in $\mathbb{S}^{n}\times \mathbb{R}$ and $\mathbb{H}^{n}\times \mathbb{R}$
Abstract
In this paper, we study biconservative submanifolds in $\mathbb{S}^{n}\times \mathbb{R}$ and $\mathbb{H}^{n}\times \mathbb{R}$ with parallel mean curvature vector field and co-dimension 2. We obtain some necessary and sufficient conditions for such submanifolds to be conservative. In particular, we obtain a complete classification of 3-dimensional biconservative submanifolds in $\mathbb{S}^{4}\times \mathbb{R}$ and $\mathbb{H}^{4}\times \mathbb{R}$ with nonzero parallel mean curvature vector field. We also get some results for biharmonic submanifolds in $\mathbb{S}^{n}\times \mathbb{R}$ and $\mathbb{H}^{n}\times \mathbb{R}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2017
- DOI:
- 10.48550/arXiv.1703.08517
- arXiv:
- arXiv:1703.08517
- Bibcode:
- 2017arXiv170308517M
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- 17 pages