Simulating SOFIA's image jitter performance and how the results compare to in-flight measurements
Abstract
SOFIA, the Stratospheric Observatory for Infrared Astronomy is an airborne telescope and in full operation since 2014. It has already successfully conducted over 400 flights and can be equipped with eight different science instruments which range from the visible to the far infrared wavelength regime. In order to reach SOFIA's scientific goals, the telescope has to provide a stable platform with the ambitous image jitter requirements of less than 0.4 "rms. Such a steady operating environment is especially important for slit spectrometers like EXES (Echelon - Cross - Echelle Spectrograph), that aim to keep the star in the area of a very thin slit for integration. Currently, image motion is mainly caused by deformation and excitation of the telescope structure in a wide range of frequencies. These disturbances are counteracted by the so-called Flexible Body Compensation system which uses a set of accelerometers to estimate the resulting image motion. To better study optimization possibilities of SOFIA's control system, a simulation tool has been developed which not only implements system identification data and analytically derived models, but also allows the implementation and verification with sensor data from in flight measurements. Results of the simulation as well as in flight measurements will be presented and improvement strategies will be discussed.
- Publication:
-
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
- Pub Date:
- September 2017
- DOI:
- Bibcode:
- 2017SPIE10401E..12G