Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations
Abstract
The understanding of the fundamental properties of turbulence in collisionless plasmas, such as the solar wind, is a frontier problem in plasma physics. In particular, the occurrence of magnetic reconnection in turbulent plasmas and its interplay with a fully-developed turbulent state is still a matter of great debate. Here we investigate the properties of small-scale electromagnetic fluctuations and the role of fast magnetic reconnection in the development of a quasi-steady turbulent state by means of 2D-3V high-resolution Vlasov-Maxwell simulations. At the largest scales turbulence is fed by external random forcing. We show that large-scale turbulent motions establish a -5/3 spectrum at {k}\perp {d}i< 1 and, at the same time, feed the formation of current sheets where magnetic reconnection occurs. As a result coherent magnetic structures are generated which, together with the rise of the associated small-scale non-ideal electric field, mediate the transition between the inertial and the subproton-scale spectrum. A mechanism that boosts the magnetic reconnection process is identified, making the generation of coherent structures rapid enough to be competitive with wave mode interactions and leading to the formation of a fully-developed turbulent spectrum across the so-called ion break.
- Publication:
-
New Journal of Physics
- Pub Date:
- February 2017
- DOI:
- 10.1088/1367-2630/aa5c4a
- Bibcode:
- 2017NJPh...19b5007C