Synthesis and Characterization of LaTiO2N
Abstract
Photocatalysts offer an excellent opportunity to shift the global energy landscape from a fossil fuel-dependent paradigm to sustainable and carbon-neutral solar fuels. Oxynitride materials such as LaTiO2N are potential photocatalysts for the water splitting reaction due to their high oxidative stability and their narrow band gaps, which are suitable for visible light absorption. However, facile synthetic routes to metal oxynitrides with controlled morphologies are rare, and the local structures of these materials are under-characterized. Ultrasonic spray synthesis (USS) offers a facile method toward complex metal oxides which can potentially be converted to oxynitrides with preservation of the microsphere structures that typify the products from such aerosol routes. Here, La-Ti-O microspheres were facilely produced by USS and converted by ammonolysis to LaTiO2N microspheres with porous shells and hollow interiors. This particle architecture is accounted for by coupling suitable combustion chemistry with the aerosol technique, producing precursor particles where the La3+ and Ti4+ are well-mixed at small length scales; this feature enables preservation of the microsphere morphology during nitridation despite the crystallographic changes that occur. The LaTiO2N microspheres are comparable oxygen evolving photocatalysts to samples produced by conventional solid state methods. Pair distribution function (PDF) analysis is a local probe designed to examine the structure of disordered crystalline materials, and is an ideal technique for characterizing the ordering of anions in oxynitrides. Preliminary studies using PDF analysis to determine the presence of anion ordering and local structure in LaTiO2N produced by solid state methods are presented here. Future experiments are proposed that will grant detailed insight into the factors driving the degree of anion ordering in these types of materials. These results demonstrate the utility of USS as a facile, potentially scalable route to complex photocatalytic materials and their precursors, and the feasibility of PDF analysis for the determination of local structures in complex oxynitrides.
- Publication:
-
Masters Thesis
- Pub Date:
- 2017
- Bibcode:
- 2017MsT.........29R
- Keywords:
-
- Chemistry;Materials science;Alternative Energy