The X-ray properties of Be/X-ray pulsars in quiescence
Abstract
Observations of accreting neutron stars (NSs) with strong magnetic fields can be used not only for studying the accretion flow interaction with the NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest are (I) the interaction of a rotating NS (magnetosphere) with the infalling matter at different accretion rates, and (II) the theory of deep crustal heating and the influence of a strong magnetic field on this process. Here, we present results of the first systematic investigation of 16 X-ray pulsars with Be optical companions during their quiescent states, based on data from the Chandra, XMM-Newton and Swift observatories. The whole sample of sources can be roughly divided into two distinct groups: (I) relatively bright objects with a luminosity around ∼1034 erg s-1 and (hard) power-law spectra, and (II) fainter ones showing thermal spectra. X-ray pulsations were detected from five objects in group (I) with quite a large pulse fraction of 50-70 per cent. The obtained results are discussed within the framework of the models describing the interaction of the infalling matter with the NS magnetic field and those describing heating and cooling in accreting NSs.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- September 2017
- DOI:
- arXiv:
- arXiv:1703.04634
- Bibcode:
- 2017MNRAS.470..126T
- Keywords:
-
- accretion;
- accretion discs;
- scattering;
- stars: magnetic field;
- stars: neutron;
- pulsars: general;
- X-rays: binaries;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 18 pages, 4 figures, 3 tables, accepted by MNRAS