Classification of finite irreducible conformal modules over some Lie conformal algebras related to the Virasoro conformal algebra
Abstract
In this paper, we classify all finite irreducible conformal modules over a class of Lie conformal algebras $\mathcal{W}(b)$ with $b\in\mathbb{C}$ related to the Virasoro conformal algebra. Explicitly, any finite irreducible conformal module over $\mathcal{W}(b)$ is proved to be isomorphic to $M_{\Delta,\alpha,\beta}$ with $\Delta\neq 0$ or $\beta\neq 0$ if $b=0$, or $M_{\Delta,\alpha}$ with $\Delta\neq 0$ if $b\neq0$. As a byproduct, all finite irreducible conformal modules over the Heisenberg-Virasoro conformal algebra and the Lie conformal algebra of $\mathcal{W}(2,2)$-type are classified. Finally, the same thing is done for the Schrödinger-Virasoro conformal algebra.
- Publication:
-
Journal of Mathematical Physics
- Pub Date:
- April 2017
- DOI:
- arXiv:
- arXiv:1606.01082
- Bibcode:
- 2017JMP....58d1701W
- Keywords:
-
- Mathematics - Rings and Algebras;
- 17B10;
- 17B65;
- 17B68
- E-Print:
- doi:10.1063/1.4979619