Highly Visible Light Activity of Nitrogen Doped TiO2 Prepared by Sol–Gel Approach
Abstract
A simple approach was explored to prepare N-doped anatase TiO2 nanoparticles (N-TiO2 NPs) from titanium chloride (TiCl4) and ammonia (NH3) via sol–gel method. The effects of important process parameters such as calcination temperatures, NH3/TiCl4 molar ratio (RN) on crystallite size, structure, phase transformation, and photocatalytic activity of titanium dioxide (TiO2) were thoroughly investigated. The as-prepared samples were characterized by ultraviolet–visible spectroscopy, x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The photocatalytic activity of the samples was evaluated upon the degradation of methylene blue aqueous solution under visible-light irradiation. The results demonstrated that both calcination temperatures and NH3/TiCl4 molar ratios had significant impacts on the formation of crystallite nanostructures, physicochemical, as well as catalytic properties of the obtained TiO2. Under the studied conditions, calcination temperature of 600°C and NH3/TiCl4 molar ratio of 4.2 produced N-TiO2 with the best crystallinity and photocatalytic activity. The high visible light activity of the N-TiO2 nanomaterials was ascribed to the interstitial nitrogen atoms within TiO2 lattice units. These findings could provide a practical pathway capable of large-scale production of a visible light-active N-TiO2 photocatalyst.
- Publication:
-
Journal of Electronic Materials
- Pub Date:
- January 2017
- DOI:
- Bibcode:
- 2017JEMat..46..158T
- Keywords:
-
- TiO<SUB>2</SUB>;
- anatase;
- visible-light activity;
- photocatalyst;
- interstitial nitrogen;
- sol–gel