Chaotic Mountain Blocks in Pluto’s Sputnik Planitia
Abstract
One of the first high-resolution Pluto images returned by New Horizons displayed a collection of tall, jagged peaks rising out of the large nitrogen ice sheet informally known as Sputnik Planitia (SP). This mountain range was later revealed to be one of several along the western edge of SP. The mountains are several hundred broken-up blocks of Pluto’s primarily water ice lithosphere and some retain surface terrains similar to the nearby intact crust surrounding SP. Water ice with some fractures or porosity is likely >5% less dense than solid N2 ice at Pluto’s temperatures. Thus it is possible the blocks are, or were, floating icebergs or at least partially suspended to the point that some blocks appear to be tilted as if they have faltered (Moore et al., 2016, Science, 351, 1284-1293).We analyze four mountain ranges on the western edge of SP and compare to chaotic terrains on Europa and Mars. The blocks on Pluto have angular planforms but we characterize their size using block surface area converted to an equivalent circular diameter. Topography was used to define block extents. The blocks range in size from 3-30 km in diameter, with a mode of ~8-10 km. Blocks range from 0.2-3.8 km in height, and block height generally increases with block diameter. One or more dark layers can be identified in a few scarp faces, and are at a similar depth to each other and to layers seen in fault and crater walls elsewhere on Pluto. A large N-S trending fault system runs tangential to SP and may be the source of crustal disruption on the western side.On Europa and Mars block sizes vary greatly between different chaos regions, but Conamara Chaos has an average block size of ~5 km in diameter, smaller than that typically seen on Pluto. Also the blocks often transition into fractured terrain still connected to the surround lithosphere at the periphery of the chaos regions. The source regions for the blocks are more obvious on Europa and Mars. Additionally the block heights on Europa and Mars generally do not increase with block size. Thus, the main mechanism of crustal breakup is likely different between these bodies.
- Publication:
-
AAS/Division for Planetary Sciences Meeting Abstracts #49
- Pub Date:
- October 2017
- Bibcode:
- 2017DPS....4922101S