Pluto's Paleoglaciation: Processes and Bounds
Abstract
New Horizons imaging of Pluto’s surface shows eroded landscapes reminiscent of assorted glaciated terrains found on the Earth such as alpine valleys, dendritic networks and others. For example, LORRI imaging of fluted craters show radially oriented ridging which also resembles Pluto’s washboard terrain. Digital elevation modeling indicates that these down-gradient oriented ridges are about 3-4 km spaced apart with depths ranging from 0.2-0.5 km. Present day glaciation on Pluto is characterized by moving N2 ice blocks presumably riding over a H2O ice bedrock substrate. Assuming Pluto’s ancient surface was sculpted by N2 glaciation, what remains a mystery is the specific nature of the glacial erosion mechanism(s) responsible for the observed features.To better resolve this puzzle, we perform landform evolution modeling of several glacial erosion processes known from terrestrial H2O ice glaciation studies. These terrestrial processes, which depend upon whether or not the glacier’s base is wet or dry, include quarrying/plucking and fluvial erosion. We also consider new erosional processes (to be described in this presentation) which are unique to the highly insulating character of solid N2 including both phase change induced hydrofracture and geothermally driven basal melt. Until improvements in our knowledge of solid N2’s rheology are made available (including its mechanical behavior as a binary/trinary mixture of CH4 and CO), it is difficult to assess with high precision which of the aforementioned erosion mechanisms are responsible for the observed surface etchings.Nevertheless, we consider a model crater surface and examine its erosional development due to flowing N2 glacial ice as built up over time according to N2 deposition rates based on GCM modeling of Pluto’s ancient atmosphere. For given erosional mechanism our aim is to determine the permissible ranges of model input parameters (e.g., ice strength, flow rates, grain sizes, quarrying rates, etc.) that best reproduces the observed length scales found on the observed fluted craters. As of the writing of this abstract, both the processes of quarrying and phase change induced hydrofracture appear to be most promising at explaining the fluted crater ridging.
- Publication:
-
AAS/Division for Planetary Sciences Meeting Abstracts #49
- Pub Date:
- October 2017
- Bibcode:
- 2017DPS....4910208U