The OmegaWhite Survey for Short-period Variable Stars. V. Discovery of an Ultracompact Hot Subdwarf Binary with a Compact Companion in a 44-minute Orbit
Abstract
We report the discovery of the ultracompact hot subdwarf (sdOB) binary OW J074106.0-294811.0 with an orbital period of {P}{orb}=44.66279+/- 1.16× {10}-4 minutes, making it the most compact hot subdwarf binary known. Spectroscopic observations using the VLT, Gemini and Keck telescopes revealed a He-sdOB primary with an intermediate helium abundance, {T}{eff} = 39 400+/- 500 K and {log}g = 5.74 ± 0.09. High signal-to-noise ratio light curves show strong ellipsoidal modulation resulting in a derived sdOB mass {M}{sdOB}=0.23+/- 0.12 {M}⊙ with a WD companion ({M}{WD}=0.72+/- 0.17 {M}⊙ ). The mass ratio was found to be q={M}{sdOB}/{M}{WD}=0.32+/- 0.10. The derived mass for the He-sdOB is inconsistent with the canonical mass for hot subdwarfs of ≈ 0.47 {M}⊙ . To put constraints on the structure and evolutionary history of the sdOB star we compared the derived {T}{eff}, {log}g, and sdOB mass to evolutionary tracks of helium stars and helium white dwarfs calculated with Modules for Experiments in Stellar Astrophysics (MESA). We find that the best-fitting model is a helium white dwarf with a mass of 0.320 {M}⊙ , which left the common envelope ≈ 1.1 {Myr} ago, which is consistent with the observations. As a helium white dwarf with a massive white dwarf companion, the object will reach contact in 17.6 Myr at an orbital period of 5 minutes. Depending on the spin-orbit synchronization timescale the object will either merge to form an R CrB star or end up as a stably accreting AM CVn-type system with a helium white dwarf donor.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- December 2017
- DOI:
- arXiv:
- arXiv:1710.07287
- Bibcode:
- 2017ApJ...851...28K
- Keywords:
-
- binaries: including multiple: close;
- stars: individual: OWJ074106.0–294811.0;
- subdwarfs;
- white dwarfs;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- Accepted for publication in ApJ, 13 pages, 7 figures