The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars
Abstract
We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a “kilonova/macronova” powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infrared {K}{{s}}-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses A≈ 195). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major—if not the dominant—site of rapid neutron capture nucleosynthesis in the universe.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- October 2017
- DOI:
- Bibcode:
- 2017ApJ...848L..27T
- Keywords:
-
- gravitational waves;
- nuclear reactions;
- nucleosynthesis;
- abundances;
- stars: neutron