Examining the Self-Assembly of Rod-Coil Block Copolymers via Physics Based Polymer Models and Polarized X-Ray Scattering
Abstract
Photovoltaics, flexible electronics, and stimuli-responsive materials all require enhanced methodology to examine their nanoscale molecular orientation. The mechanical, electronic, optical, and transport properties of devices made from these materials are all a function of this orientation. The polymer chains in these materials are best modeled as semi-flexible to rigid rods. Characterizing the rigidity and molecular orientation of these polymers non-invasively is currently being pursued by using polarized resonant soft X-ray scattering (P-RSoXS). In this presentation, we show recent work on implementing such a characterization process using a rod-coil block copolymer system in the rigid-rod limit. We first demonstrate how we have used physics based models such as self-consistent field theory (SCFT) in non-polarized RSoXS work to fit scattering profiles for thin film coil-coil PS- b-PMMA block copolymer systems. We then show by using a wormlike chain partition function in the SCFT formulism to model the rigid-rod block, the methodology can be used there as well to extract the molecular orientation of the rod block from a simulated P-RSoXS experiment. The results from the work show the potential of the technique to extract thermodynamic and morphological sample information.
- Publication:
-
APS March Meeting Abstracts
- Pub Date:
- March 2017
- Bibcode:
- 2017APS..MAR.R9006H