Laser electron collider within a micro-channel
Abstract
We propose a laser-electron collider based on a laser-driven micro-channel-plate target. In this unique geometry, electrons accelerated within the channel can collide head-on with the laser reflected from a foil attached onto the rear target surface. The simple scheme allows for efficient generation of gamma-photons and most importantly, the observing of radiation-reaction effect for the first time. It resolves the aligning and time synchronization challenges for laser-electron colliding scenarios involving two light/electron beams. We predict that a single 5PW laser is sufficient to make radiation-reaction effect measurable. A principle-of-proof experiment was conducted at a currently available 200TW laser system. The superior acceleration of electrons with the novel micro-channel structure was confirmed, showing enhanced electron cut-off energies and slope temperatures compared to ordinary flat interfaces. The results set forth the basis for radiation-reaction measurement from laser-electron colliding in upcoming multi-petawatt laser systems.
- Publication:
-
APS Division of Plasma Physics Meeting Abstracts
- Pub Date:
- October 2017
- Bibcode:
- 2017APS..DPPTO8014J