Electron Dropout Echoes Induced by Interplanetary Shock: A Statistical Study
Abstract
"Electron dropout echo" as indicated by repeated moderate dropout and recovery signatures of the flux of energetic electron in the out radiation belt region has been investigated systematically. The electron dropout and its echoes are usually found for higher energy (> 300 keV) channels fluxes, whereas the flux enhancements are obvious for lower energy electrons simultaneously after the interplanetary shock arrives at the Earth's geosynchronous orbit. 104 dropout echo events have been found from 215 interplanetary shock events from 1998 to 2007 based on LANL satellite data. In analogy to substorm injections, these 104 events could be naturally divided into two categories: dispersionless (49 events) or dispersive (55 events) according to the energy dispersion of the initial dropout. It is found that locations of dispersionless events are distributed mainly in the duskside magnetosphere. Further, the obtained locations derived from dispersive events with the time-of-flight technique of the initial dropout regions are mainly located at the duskside as well. Statistical studies have shown that the effect of shock normal, interplanetary magnetic field Bz and solar wind dynamic pressure may be insignificant to these electron dropout events. We suggest that the electric field impulse induced by the IP shock produces a more pronounced inward migration of electrons at the dusk side, resulting in the observed dusk-side moderate dropout of electron flux and its consequent echoes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSM11B2303L
- Keywords:
-
- 2740 Magnetospheric configuration and dynamics;
- MAGNETOSPHERIC PHYSICS;
- 2784 Solar wind/magnetosphere interactions;
- MAGNETOSPHERIC PHYSICS;
- 2788 Magnetic storms and substorms;
- MAGNETOSPHERIC PHYSICS;
- 7845 Particle acceleration;
- SPACE PLASMA PHYSICS