Space Weather Now-Casting for Area-Denied Locations: Testing All-Sky-Imaging Applications at Geomagnetic Conjugate Points.
Abstract
We explore the concept of using an all-sky-imager (ASI) in one hemisphere to provide now-casting of ionospheric perturbations in the opposite hemisphere. The specific example deals with low-latitude plasma instabilities known as equatorial spread-F (ESF) that depend on geomagnetic field controlled electrodynamics. ASI observations of 630.0 nm airglow from 300 km exhibit regions of low emission ("airglow depletions") that correlate highly with ESF patterns of radiowave disruptions, e.g., from GPS satellites. For both oceanographic and geopolitical reasons, there are vast regions of the globe that cannot be used for ground-based now-casting of local ESF effects. For such area-denied locations, it is possible for observations of airglow depletions from the opposite hemisphere to be used to specify both local and conjugate location environmental impacts. We use fifteen months of ASI observations from the El Leoncito Observatory (Argentina) to predict simultaneous conditions at its trans-equatorial geomagnetic conjugate point in Villa de Leyva (Colombia)—validated by independent ASI observations at that location. We find the success rate of conjugate point now-casting to be greater than 95% for large-scale ESF occurrence patterns. For a different pair of stations at higher magnetic latitudes, three years of observations from the Arecibo Observatory (Puerto Rico) were used to make ESF now-casting at its conjugate point in Mercedes (Argentina) with a 85% success rate.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMSA31A2570B
- Keywords:
-
- 7924 Forecasting;
- SPACE WEATHER;
- 7934 Impacts on technological systems;
- SPACE WEATHER;
- 7959 Models;
- SPACE WEATHER;
- 7974 Solar effects;
- SPACE WEATHER