On-Farm, Almond Orchard Flooding as a Viable Aquifer Recharge Alternative
Abstract
In 2014, California legislators passed the Sustainable Groundwater Management Act (SGMA), which requires groundwater sustainability agencies (areas) to identify/prioritize water basins, develop current and projected water use/needs, develop a groundwater management plan, develop fees, etc. One of the challenges for implementing SGMA is the lack of data that can support alternative groundwater recharge methods such as on-farm flooding. Prior to anthropogenic river control, river floodplains captured excess water during overbank flow in the rainy season in the CA central valley. Today levees and canals strategically route rainy season high flows to the delta/ocean when irrigation water is not needed. Utilizing farmland once again as infiltration basins for groundwater banking and aquifer recharge could be a viable answer to California's depleted central valley aquifers. Prior to 2017, U.C. Davis had partnered with the Almond Board of California (ABC) and local growers to study the efficacy of agricultural flooding and the effects on annual almond crops (. LBNL joined this team to help understand the conveyance of recharge water, using electrical resistivity tomography (ERT), into the subsurface (i.e. localized fast paths, depth of infiltration, etc.) during flooding events. The fate of the recharge water is what is significant to understanding the viability of on-farm flooding as an aquifer recharge option. In this study two orchards (in Delhi and Modesto, CA), each approximately 2 acres, were flooded during the almond tree dormant period (January), to recharge 2 acre/ft of water into the local aquifers. ERT was used to characterize (soil structure) and monitor water infiltration over a single flooding event to investigate the fate of applied water. Data were collected every hour prior to flooding (baseline), during, and after all flood water had infiltrated (about 5 days total). Our time-lapse ERT results show a heterogeneous soil structure that leads to non-uniform infiltration (fast paths) and water recharge well below the root zone to a depth below 15m (45ft) at both study sites. These results advocate the use of on-farm flooding as a viable option for groundwater recharge of local aquifers and its usefulness given existing infrastructure and potential to divert water as it heads to the delta/ocean.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMPA23A0367U
- Keywords:
-
- 1813 Eco-hydrology;
- HYDROLOGY;
- 1830 Groundwater/surface water interaction;
- HYDROLOGY;
- 1880 Water management;
- HYDROLOGY;
- 6620 Science policy;
- PUBLIC ISSUES