Seismic Characterization of the Terrebonne Mini-basin, a Hydrate Rich Depositional System in the Gulf of Mexico
Abstract
Natural gas bearing hydrates are a focus of research as a potential source of energy and carbon storage because they occur globally in permafrost regions and marine sediment along every continent. This study focuses on the structural and stratigraphic architecture of the Terrebonne mini-basin, northwest Walker Ridge, Gulf of Mexico, to characterize the depositional architecture and to describe possible migration pathways for petroleum. Questions addressed include: a) continuity of sand layers b) effects of faulting and c) ponding versus fill and spill. To address these questions, seven of forty-two high resolution USGS 2D seismic lines were interpreted and then verified with WesternGeco 3D seismic data, yielding three qualitative models for the depositional environment of hydrate-bearing sand intervals. Deeper hydrate-bearing sand reservoirs were deposited as sheet-like turbidite lobes. Two shallower hydrate-bearing intervals display two possible depositional systems which form reservoirs- 1) sandy to muddy channel sealed laterally by muddy levees with associated sandy crevasse splays, and 2) ponded sandy lobes cut by channels filled with sand lags and mud. Additional observations in the 2D seismic include mass transport deposits and possible contourites. Salt movement facilitated mini-basin formation which was then ponded by sediment and followed by episodes of fill-and-spill and erosion. These seismic interpretations indicate periodic salt uplift. Overturn of salt along the northwestern edge of the basin resulted in thrust faults. The faults and erosional surfaces act as seals to reservoirs. The greatest volume of sandy reservoir potential occurs in sheet-like turbidite lobes with high lateral continuity, which facilitates updip migration of deep-sourced thermogenic gas along bedding surfaces. Channel levees serve as lateral seals to gas hydrate reservoirs, whereas faults, erosional surfaces, and shales provide vertical seals. Characterization of the Terrebonne Basin depositional system and basin fill dynamics will inform a 3D basin and petroleum system model through time. The Earth model may serve as a platform within which future lab and production test findings can be integrated.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMOS53B1204D
- Keywords:
-
- 0466 Modeling;
- BIOGEOSCIENCES;
- 3004 Gas and hydrate systems;
- MARINE GEOLOGY AND GEOPHYSICS;
- 3022 Marine sediments: processes and transport;
- MARINE GEOLOGY AND GEOPHYSICS;
- 5114 Permeability and porosity;
- PHYSICAL PROPERTIES OF ROCKS