Modern Instrumentation of a Historical Landslide to Understand Dynamic Processes Governing Slope Movement in a Hostile Environment.
Abstract
The Milepost 6.2 Landslide on Many Glacier Road in Glacier National Park, Montana, has been moving since construction of the roadway in the early 1900's. Movement of the slide has a direct impact on Park operations and requires regrading and reconstruction of the road on a nearly annual basis. Prior attempts to stabilize the slope were not effective. Despite the history of this slide, very little quality data was available to delineate the depth and shape of the slide or the groundwater pressures that influence slope stability due to only seasonal data collection and a hostile winter environment. Landslide dynamics are further complicated where the toe of the slide becomes submerged seasonally by Lake Sherburne. In addition, due to irrigation use the lake levels fluctuate rapidly with seasonal rise and drops commonly greater than 30 feet in elevation. Five Shape Accelerometer Array inclinometers (SAAs) were installed to depths between 60 and 200 feet, along with 10 vibrating wire piezometers, one tipping bucket rain gauge, and onsite data acquisition system with a real-time satellite communication link enabling year-round data collection. Measurements of groundwater pressures and slide dynamics were used to develop a well constrained 2-D dynamic model of slide movement. Movement is controlled by clayey zones in glacial till deposits that mantle the valley slopes, along with water pressures from groundwater in the slope and fluctuating lake levels at the toe of the slope. The SAAs document slide plane locations and rates of slide movement as it changes through the year in response to the dynamic hydrologic setting. SAAs document sliding of over 3 feet and continue to operate and generate additional data. The data collected enabled the design of an extensive horizontal drain system to lower the groundwater pressures and stabilize the slope. Continuous year-round monitoring allowed comparison of slope movement in response to changes in lake elevation and precipitation events.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMNH43A0208J
- Keywords:
-
- 1826 Geomorphology: hillslope;
- HYDROLOGY;
- 4319 Spatial modeling;
- NATURAL HAZARDS;
- 4333 Disaster risk analysis and assessment;
- NATURAL HAZARDS;
- 4337 Remote sensing and disasters;
- NATURAL HAZARDS