Assessment of Remote Sensing Products and Hydrologic Simulation of the 2016 Louisiana Flood in the Amite River Basin
Abstract
Riverine and coastal flooding are one of the most common environmental hazards that affect millions of people around the world. For example, in August 2016, a slow-moving upper level low-pressure system with a high amount of atmospheric moisture brought heavy rains from August 11 to August 13. The torrential downpours led to widespread flash flooding and river flooding across multiple parishes in Southeast Louisiana and Southwest Mississippi (NWS, 2016; Watson et al., 2017). Precipitation totals as high as 26 inches were recorded during the two-day event. A Louisiana Economic Development report documented that the state of Louisiana suffered more than eight billion dollars in damage from the catastrophic flooding (LED, 2016). According to the National Weather Service (NWS) in New Orleans, the rainfall caused the Amite River, Comite River, Tangipahoa River and Tickfaw River to rise to record-setting levels. Some of the most serious flooding occurred along the Amite River, which runs between Baton Rouge and the nearby city of Denham Springs, and has its headwaters in southwestern Mississippi and drains into Lake Maurepas (Mossa et al., 1997). To develop an understanding of the driving mechanisms that caused the catastrophic flooding a campaign was initiated to collect and rigorously examine all possible remote sensing products in order to derive the flooding extent and depth within the Amite River basin. In addition, a Soil and Water Assessment Tool (SWAT) has been developed for the Amite River watershed to simulate runoff from the 2016 Louisiana flood event. The developed and assimilated remote sensing and modeling products will enhance understanding of the hydrological processes within the Amite River basin. This will provide further insight into conceptualization of flood risk across river deltas that are vulnerable to both riverine and coastal flooding. Reference:LED. (2016). The economic impact of the august 2016 floods on the state of Louisiana. Mossa, J., & McLean, M. (1997). Channel planform and land cover changes on a mined river floodplain. Applied Geography, 17(1), 43-54. NWS. (2016). August 2016 Record Flooding. Watson, K. M., Storm, J. B., Breaker, B. K., & Rose, C. E. (2017). Characterization of peak streamflows and flood inundation of selected areas in Louisiana from the August 2016 flood (2017-5005).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFMGC23C1084G
- Keywords:
-
- 0416 Biogeophysics;
- BIOGEOSCIENCES;
- 0439 Ecosystems;
- structure and dynamics;
- BIOGEOSCIENCES;
- 1622 Earth system modeling;
- GLOBAL CHANGE;
- 1641 Sea level change;
- GLOBAL CHANGE