Investigation of the local stress perturbation in Long Valley, California, by coupling seismic analyses and FEM numerical modeling
Abstract
Long Valley Caldera in eastern California is well known for producing numerous volcanic eruptions over the past 3 Myr. There has been a stress perturbation in the vicinity of the caldera with respect to the regional stress field. In this study, we combine seismic analyses and finite-element numerical modeling to investigate this local stress anomaly. We first compute focal mechanisms for earthquakes relocated by using a three-dimensional (3-D) seismic velocity model and waveform cross-correlation data. The final 42,000 good-quality focal solutions show that the mechanisms are dominated by approximately the same amount of normal faulting and strike-slip and much fewer reverse focal types. These focal mechanisms are then used to invert for the stress field in the study area by applying the SATSI algorithm. The orientations of the inverted minimum horizontal principal stress (ShMIN) greatly agree with those in previous studies based on analyses of focal mechanisms, borehole breakouts, and fault offsets. The NE-SW oriented ShMIN in the resurgent dome and south moat of the caldera is in contrast to the dominating E-W orientation in the western Basin and Range province and Mammoth Mountain. We then investigate which mechanism most likely causes this local stress perturbation by applying 3-D Finite Element Modeling (FEM). Mechanical properties (e.g., density, Poisson's ratio, and Young's Modulus) used in the model are derived from the latest 3-D seismic tomography model. Taking into account an initial stress field, we examine stress perturbations resulting from different sources: (1) pressurization of a magma reservoir, (2) dyking event, and (3) tectonic faulting; and compute the corresponding stress field orientation for each and compare it with the observations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V23A0463L
- Keywords:
-
- 1207 Transient deformation;
- GEODESY AND GRAVITY;
- 8159 Rheology: crust and lithosphere;
- TECTONOPHYSICS;
- 8434 Magma migration and fragmentation;
- VOLCANOLOGY;
- 8485 Remote sensing of volcanoes;
- VOLCANOLOGY