Short-circuiting magma differentiation from basalt straight to rhyolite?
Abstract
Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction has been efficient for multiple eruptions? References: Dufek & Bachmann (2010) Geology 38, 687-690; Schmidt & Jagoutz (2017) G-cubed, doi: 10.1002/2016GC006699; Singer et al. (2008) GSA Bulletin 120, 599-618.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.V11C0366R
- Keywords:
-
- 8410 Geochemical modeling;
- VOLCANOLOGY;
- 8412 Reactions and phase equilibria;
- VOLCANOLOGY;
- 8413 Subduction zone processes;
- VOLCANOLOGY;
- 8439 Physics and chemistry of magma bodies;
- VOLCANOLOGY