Gully incision rates on the bedrock of a large dip-slope landslide revealed by multi-period LiDAR DEMs
Abstract
Recent advances in airborne laser scanning (ALS) technology have provided a great opportunity for characterizing surface erosion through developing improved methods in multi-period DEM differencing and geomorphometry. This study uses three periods of ALS digital elevation model (DEM) data to analyze the short-term erosional features of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake in Taiwan. Two methods for calculating the bedrock incision rate, the equal-interval cross section selection method and the continuous swath profiles selection method, were used in the study after nearly ten years of gully incision following the earthquake-triggered dip-slope landslide. Multi-temporal gully incision rates were obtained using the continuous swath profiles selection method, which is considered a practical and convenient approach in terrain change studies. After error estimation and comparison of the multi-period ALS DEMs, the terrain change in different periods can be directly calculated, reducing time-consuming fieldwork such as installation of erosion pins and measurement of topographic cross sections on site. In this study, the gully bedrock incision rates ranged between 0.23 and 3.98 m/year, remarkably higher than the typical results from the previous studies. By comparing the DEM data, aerial photos, and precipitation records of this area, the effects of erosion could be observed from the retreat of the Chunqiu Cliff outline during August 2011 to September 2012. It was inferred that the change in the topographic elevation during 2011-2012 was mainly due to the torrential rain brought by Typhoon Soula, which occurred on 30 July 2012. The local gully incision rate in the lower part of the landslide surface was remarkably faster than that of the other regions, suggesting that the fast incision of the toe area possibly contributes to the occurrence of repeated landslides in the Tsaoling area.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.T43C0723C
- Keywords:
-
- 9320 Asia;
- GEOGRAPHIC LOCATION;
- 7221 Paleoseismology;
- SEISMOLOGY;
- 8107 Continental neotectonics;
- TECTONOPHYSICS;
- 8175 Tectonics and landscape evolution;
- TECTONOPHYSICS