A seismic hazard overview of the Mitidja Basin (Northern Algeria)
Abstract
The Mitidja Basin (MB) is located in N Algeria and it is filled by quaternary sediments with a length of 100 km on the EW direction and around 20 km width. The S and N limites comprise the Boumerdes-Larbaa-Blida, and the Thenia-Sahel active fault system, respectively. Both fault systems are of the reverse type with opposed dips and accommodate a general slip rate of ∼4 mm/year. In the basin occurred earthquakes that caused severe damage and losses such as the ones of Algiers (1365, Io=X; 1716, Io=X) and the Bourmedes earthquake (Mw 6.9; May 2003) that affected the area of Zemmouri and caused 2.271 deaths. The event was caused by the reactivation of the MB boundary faults. The earthquake generated a max uplift of 0.8m along the coast and a horizontal max. slip of 0.24m.Recent studies show that the Boumerdes earthquake overloaded the adjacent faults system with a stress increase between 0.4 and 1.5 bar. The stress change recommends a detailed study of mentioned faults system due to the increase of the seismic hazard. The high seismogenic potential of the fault system bordering the MB, increases the vulnerability of densely populated areas of Algiers and the amplification effect caused by the basin are the motivation of this project that will focus on the evaluation of the seismic hazard of the region. To achieve seismic hazard assessment on the MB, through realistic predictions of strong ground motion, caused by moderate and large earthquakes, it is important 1) develop a detailed 3D velocity/structure model of the MB that includes geological constraints, seismic reflection data acquired on wells, refraction velocities and seismic noise data, and determination of the attenuation laws based on instrumental records; 2) evaluate the seismic potential and parameters of the main active faults of the MB; 3) develop numerical methods (deterministic and stochastic) to simulate strong ground motions produced by extended seismic sources. To acquire seismic noise were used broadband stations on a regular basis of 2.5km by 5.0 km (in lat and long, respectively), recording at least 60 minutes in each node. We acquired seismic noise on 150 points inside and at the edges of the basin. Through the Horizontal/Vertical Spectral Ratio we identify frequencies lower than 1Hz which are related with the transition of the quaternary sediments to the underlying rock.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.S31B0811F
- Keywords:
-
- 7212 Earthquake ground motions and engineering seismology;
- SEISMOLOGY;
- 7255 Surface waves and free oscillations;
- SEISMOLOGY;
- 7290 Computational seismology;
- SEISMOLOGY