Modeling Venus-like Worlds Through Time and Implications for the Habitable Zone
Abstract
In recent work [1] we demonstrated that the climatic history of Venus may have allowed for surface liquid water to exist for several billion years using a 3D GCM [2]. Model resolution was 4x5 latitude x longitude, 20 atmospheric layers and a 13 layer fully coupled ocean. Several assumptions were made based on what data we have for early Venus: a.) Used a solar spectrum from 2.9 billion years ago, and 715 million years ago for the incident radiation. b.) Assumed Venus had the same slow modern retrograde rotation throughout the 2.9 to 0.715 Gya history explored, although one simulation at faster rotation rate was shown not to be in the HZ. c.) Used atmospheric constituents similar to modern Earth: 1 bar N2, 400ppmv CO2, 1ppmv CH4. d.) Gave the planet a shallow 310m deep ocean constrained by published D/H ratio observations. e.) Used present day Venus topography and one run with Earth topography.In all cases except the faster rotating one the planet was able to maintain surface liquid water. We have now inserted the SOCRATES [3] radiation scheme into our 3D GCM to more accurately calculate heating fluxes for different atmospheric constituents. Using SOCRATES we have explored a number of other possible early histories for Venus including: f.) An aquaplanet configuration at 2.9Gya with present day rotation period.g.) A Land planet configuration at 2.9Gya with the equivalent of 10m of water in soil and lakes. h.) A synchronously rotating version of a, f, and g (supported by recent work of [4] and older work of [5]) i.) A Venus topography with a 310m ocean, but using present day insolation (1.9 x Earth). j.) Versions of most of the worlds above but with solar insolations >1.9 to explore more Venus-like exoplanetary worlds around G-type stars. In these additional cases the planet still resides in the liquid water habitable zone. Studies such as these should help Astronomers better understand whether exoplanets found in the Venus zone [6] are capable of hosting liquid water on their surfaces and whether significant resources should be directed at their characterization in the future. [1] Way, M.J. et al. (2016) GRL, 43, 8376 [2] Way, M.J. et al. (2017) ApJS, 231, 1[3] Edwards, J.M., Slingo, A. (1996) Q. J. Royal. Met. Soc. 122, 689[4] Barnes, R. (2017) Cel Mech Dyn Ast, in Press[5] Dobrovolskis & Ingersoll (1980), Icarus, 41, 1[6] Kane et al. (2013), ApJL 794, 5
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P53A2646W
- Keywords:
-
- 5210 Planetary atmospheres;
- clouds;
- and hazes;
- PLANETARY SCIENCES: ASTROBIOLOGY;
- 6295 Venus;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6296 Extra-solar planets;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS