VICI (Venus In Situ Composition Investigations): The Next Step in Understanding Venus Climate Evolution
Abstract
Venus provides a natural laboratory to explore an example of terrestrial planet evolution that may be cosmically ubiquitous. By better understanding the composition of the Venus atmosphere and surface, we can better constrain the efficiency of the Venusian greenhouse. VICI is a proposed NASA New Frontiers mission that delivers two landers to Venus on two separate Venus fly-bys. Following six orbital remote sensing missions to Venus (since 1978), VICI would be the first mission to land on the Venus surface since 1985, and the first U.S. mission to enter the Venus atmosphere in 49 years. The four major VICI science objectives are:
Atmospheric origin and evolution: Understand the origin of the Venus atmosphere, how it has evolved, including how recently Venus lost its oceans, and how and why it is different from the atmospheres of Earth and Mars, through in situ measurements of key noble gases, nitrogen, and hydrogen. Atmospheric composition and structure: Reveal the unknown chemical processes and structure in Venus' deepest atmosphere that dominate the current climate through two comprehensive, in situ vertical profiles. Surface properties and geologic evolution: For the first time ever, explore the tessera from the surface, specifically to test hypotheses of ancient content-building cycles, erosion, and links to past climates using multi-point mineralogy, elemental chemistry, imaging and topography. Surface-atmosphere interactions: Characterize Venus' surface weathering environment and provide insight into the sulfur cycle at the surface-atmosphere interface by integrating rich atmospheric composition and structure datasets with imaging, surface mineralogy, and elemental rock composition. VICI is designed to study Venus' climate history through detailed atmospheric composition measurements not possible on earlier missions. In addition, VICI images the tessera surface during descent enabling detailed topography to be generated. Finally, VICI makes multiple elemental chemistry measurements, including depth profiles through the weathering rind and subsurface, and the first ever direct mineralogy measurements on the Venus surface. VICI's payloads build on the success of the Mars Science Laboratory (MSL) by carrying the same instrumentation that has delivered high-impact science results on Mars.- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2017
- Bibcode:
- 2017AGUFM.P52A..06G
- Keywords:
-
- 5210 Planetary atmospheres;
- clouds;
- and hazes;
- PLANETARY SCIENCES: ASTROBIOLOGY;
- 6295 Venus;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS;
- 6296 Extra-solar planets;
- PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS